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Abstract—Energy used to overcome elevation is a significant
factor in estimating energy consumption of moving objects and
(electric) vehicles in particular. A common source of elevation
data for electric vehicle energy estimations are digital eleva-
tion models (DEMs). These DEMs are available from multiple
providers and with varying quality as free or paid data. This
paper presents an evaluation of the impacts of DEM quality and
methods used to sample DEM values for elevation profiles on
energy estimations for electric vehicle routes. The evaluation is
carried out for two different study areas: an urban mostly flat
area, and a rural alpine area. An overview of the error obtained
with different DEMs and sampling methods in these two areas is
provided. These results can serve as a reference for estimating the
magnitude of the energy estimation error in case high resolution
elevation data is not available in a study area.
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I. INTRODUCTION

Due to their limited battery capacity and longer recharging
times, it is necessary to have tools to reliably estimate electric
vehicle (EV) energy consumption in order to leverage the full
potential of e-mobility. Range anxiety is an issue for both
potential commercial an private users. To address this issue, it
is crucial to provide users with adequate information about the
current energy status and to reliably predict the energy required
to complete planned trips. It is therefore necessary to develop
solid methods to estimate energy consumption for trip and tour
planning purposes. Energy consumption modeling for EVs is
a complex topic which requires a thorough understanding of
various technical and human factors such as motor and recu-
peration efficiency rates as well as individual driver behavior.
One significant factor in estimating energy consumption is the
energy used to overcome elevation changes.

A common source of elevation data for electric vehicle
energy estimations are digital elevation models (DEMs). DEMs
are available from multiple data providers as free or paid
data with varying quality, for example, with respect to spatial
resolution, up-to-dateness, coverage, and applied data correc-
tion. This paper shows how DEM quality and methods used
to sample DEM values for route elevation profiles impact

Fig. 1. Elevation contours at 50 meter intervals in Vienna (a) and Imst (b)
based on 10m DEMs

energy estimations for EV routes. There currently exists no
guideline for an informed decision about which DEM quality
and sampling methods (nearest neighbor, bilinear or bicubic
sampling) should be employed to compute accurate energy
estimates for EVs or what errors to expect when no high
resolution DEM is available for a study region. Most papers
in the mobility research context so far do not specify which
sampling method was used to derive elevation information
from the DEM [1]–[4] – most commonly NASA Shuttle Radar
Topography Mission (SRTM) – with the exception of [5] who
use nearest neighbor sampling and [6] who perform bicubic
sampling but do not go into detail on how these methods
compare to the alternative methods.

The evaluation presented in this study was carried out for
two different study areas with different topography: the city
of Vienna and the district of Imst in Tirol, Austria. While the
city of Vienna is mostly dominated by flat terrain (with the
exception of some western city districts which are dominated
by the north-eastern foothills of the Alps, as depicted in Figure
1(a), the district of Imst is located in the Tyrolean Alps and
represents a mountainous study area, illustrated in Figure 1(b).
We present an overview of the error obtained with different
DEMs and sampling methods in the two areas. These results
can serve as a reference for how large the error will be when
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high resolution elevation data is not available in a study area.

Section II introduces the energy consumption model and
raster sampling methods used in this study. Section III de-
scribes the different DEMs. Section IV presents the results
which are discussed in Section V. The conclusions are sum-
marized in Section VI.

II. METHODOLOGY

To estimate energy consumption on a route, we use a vehi-
cle longitudinal dynamics model based on [7]. For accelerating
a vehicle against external resistances (air drag, rolling and
grade resistance), the electric motor has to provide a tractive
effort. The relationship between acceleration a, tractive and
resistance forces can be written as

FT = a · f ·m+ FR, (1)

where FT is the traction force, provided by the electric motor
and FR are resistances acting on the vehicle. m is the total
mass of the vehicle and factor f represents mass factor of all
rotating parts. The composition of resistances is defined as

FR = m · g · sin(α)︸ ︷︷ ︸
Grade

+m · g · cos(α) · crr︸ ︷︷ ︸
Rolling

+
ρ ·A · cw

2
· v2︸ ︷︷ ︸

Air

,

(2)
with g as the gravitational acceleration, α the grade angle of
the road and crr the rolling friction coefficient. Air drag is
influenced by velocity v, air density ρ, vehicle front surface
area A and air drag coefficient cw.

The tractive power for moving the vehicle is provided by
the motor, connected to the battery. The electrical power drawn
from the battery is denoted as

Pel,out =
FT · v
ηM

+ P0. (3)

where ηM is the energy efficiency of transmission, motor and
power conversion. Auxiliary components of the car cause an
additional demand for electric power (P0), also known as basic
consumption.

During decelerating or downhill driving, traction force FT
may be negative. In this case energy is transmitted back to the
battery described by

Pel,in = FT · v · ηG + P0, (4)

with ηG as the efficiency of transmission, generator and in-
vehicle charger.

For estimating the total energy demand of a trip, the
electrical power Pel, flowing either into or out of the battery
is integrated over trip time T

Fig. 2. Model predictions and actual energy consumption measurements for
a sample trip in Vienna
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Fig. 3. Energy estimate composition for the sample trip depicted in Fig. 2

TABLE I. PROPERTIES OF THE SAMPLE TRIP DEPICTED IN FIG. 2

Description Value
Distance [m] 2807
Travel time [sec] 251
Avg. speed [km/h] 40
Avg. running speed (speed > 0) [km/h] 46
95th percentile speed [km/h] 61
Number of stops 1
Sum of elevation down [m] 23
Sum of elevation up [m] 32
Avg. grade up [%] 3.3
Avg. grade down [%] 3.8
Estimated energy consumption [kWh/100km] 11
Measured energy consumption [kWh/100km] 11.8

Eel =

∫ T

0

Peldt. (5)

Figure 2 shows energy consumption estimates based on this
model (5) compared to actual measurements for a section of a
trip in Vienna. The properties of the whole trip are summarized
in Table I. Moreover this table contains estimated and measure
energy consumption for the whole trip. The test vehicle was a
Mitsubishi iMiEV and parameters have been chosen according
to Table II, except for the basic energy demand which was
estimated (P0 = 964W ) directly from the trip measurements,
by analyzing electric power during halts. The figure shows a
good correspondence between estimated and measured energy
consumption.

For each of the two study regions, the energy consumption
model (5) has been applied to 500 randomly generated routes.
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TABLE II. VEHICLE PARAMETERS

Parameter iMiEV E-Cell eNV200
Empty weight (m) [kg] 1120 1594 1480
Power [kW] 49 50 80
Front surface area (A) [m2] 2.14 2.81 3.26
Air drag coeff. (cw) 0.33 0.29 0.31
Battery Size [kWh] 16 36 24︸ ︷︷ ︸
Rolling friction coeff. (crr) 0.01
Air density (ρ) [ Kg

m3 ] 1.24
Efficiency drive (ηM ) 0.95
Efficiency recuperation (ηG) 0.6
Basic energy demand (P0) [kW] 0.5
Mass factor (f ) 1.05

The routes were generated by routing on an OpenStreetMap
[9] street graph between randomly generated start and end
locations. Given a route

R =< xk, yk > with k = 1...K, (6)

the elevation values must be determined from the DEM for
every route geometry node (xk, yk).

We define a DEM as

H(xi, yi) with
xi+1 = xi +4x
yi+1 = yi +4y,

(7)

where4x and4y are the DEM resolution in x and y direction,
respectively.

Raster sampling at route geometry nodes is determined as

H(xk, yk) = I(xk, yk), (8)

where I is the interpolation method applied to the route geom-
etry node. Raster sampling was implemented using the open
source geographic information system QGIS [10] Processing
framework. The three commonly used raster sampling methods
[11] which were compared in this study are: Nearest Neighbor
which determines the value at the sampling location by the
nearest cell center on the input grid, bilinear interpolation
which uses the nearest four cell centers, and bicubic inter-
polation using cubic splines based on [8] which uses the 16
nearest cell centers.

For the energy estimation, the speed was kept constant
on the whole route to keep the non-elevation-dependent pa-
rameters fixed, since this evaluation focuses exclusively on
the impact of elevation on energy estimates. The vehicle
parameters used for the computations are based on a Mercedes
A Klasse E-Cell. Table II lists all parameters necessary for
applying the energy estimation model (5) for different vehicles.
This table thus provides an overview of common vehicle
parameter values for small private EVs such as the Mitsubishi
iMiEV and bigger ones such as the Mercedes E-Cell and
Nissan eNV200 – an EV used, for example, as taxi in London.
The second group of parameters listed bellow the horizontal
braces are not available for individual vehicles and therefore
general values have been assumed.

TABLE III. DEM PROPERTIES

Name Resolution [m] Elevation value data type
SRTM 90 Integer
EU-DEM 25 Float
Wien 10 & Imst 10 10 Float
Wien 5 5 Float

Note that energy estimation results vary for different vehi-
cle types (e.g. mass or size of vehicle) but this does not affect
the general conclusion since grade remains a relevant factor
for energy consumption.

III. DIGITAL ELEVATION MODELS

We compare four DEMs for the city of Vienna and three
DEMs for the district of Imst in Tirol, Austria (as listed in
Table III): NASA Shuttle Radar Topography Mission (SRTM)
Version 3.0, EU-DEM, a 10 meter DEM of Vienna, a 10 meter
DEM of Imst, and a 5 meter DEM of Vienna.

NASA SRTM V3.0 (from now on referred to as SRTM)
was released on November 20th, 2013. SRTM V3.0 has
eliminated voids found in previous versions with fill from
ASTER Global Digital Elevation Model Version 2, and USGS
GMTED2010 or USGS National Elevation Dataset. SRTM
v3.0 data for areas outside the U.S. is provided with a reso-
lution of approximately 90 meters (three-arc-second postings)
[12] with elevation values stored as integers.

EU-DEM is a digital surface model covering Europe,
created in the course of the Copernicus programme funded
by the European Union. The data was released in November
2013 [13] and is provided at a resolution of 25 meters with
elevation values stored as floats. EU-DEM is based on SRTM
and ASTER GDEM data [17].

The 5 and 10 meter elevation models for Vienna and the
10 meter elevation model of Imst have been published as open
government data (OGD) by the city of Vienna and the state
of Tirol respectively under a Creative Commons license [14],
[15]. The 5 and 10 meter DEMs of Vienna (from now on
referred to as Wien 5 and Wien 10 respectively) are based
on surveying data such as surface points, break lines (slope
edges, shoreline), and airborne laser scanning data. Wien 5 was
provided as a regular vector point grid with elevation values
stored as floats via a Web Feature Service (WFS). In 2014,
Wien 5 was removed from the OGD servers and replaced with
a 10 meter GeoTIFF raster version [14]. A rasterized version
of the Wien 5 data is still available from the open data website
opendataportal.at [16]. The 10 meter DEM of Imst is provided
in the same GeoTIFF format [15].

To illustrate the differences between these DEMs and the
effect of different raster sampling methods, Figure 4 shows
elevation and grade profiles based on the four Viennese DEMs
for the sample trip depicted in Figure 2 which was tracked with
a sampling interval of 1 second. For each position, elevation
was sampled from the DEMs using Nearest Neighbor (Figure
4(a)) and bilinear interpolation (Figure 4(c)). The sudden
elevation changes exhibited particularly by the elevation profile
based on SRTM in Figure 4(a) are due to the Nearest Neighbor
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(a) (b)
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Fig. 4. Elevation (a),(c) and grade (b),(d) profiles for the sample trip depicted
in Fig. 2

sampling of the integer raster values in SRTM. These sudden
elevation changes translate into erratic changes in grade values
as illustrated in Figure 4(b). In contrast, bilinear interpolation
leads to a better alignment of grade profiles derived from high
and low-resolution DEMs, as shown in Figures 4(c)-(d).

IV. RESULTS

Based on the vehicle longitudinal dynamics model [7], the
overall energy consumption is composed of: basic energy con-
sumption, kinetic energy to accelerate and energy to overcome
air drag, rolling resistance, and elevation difference (grade).
Figure 5 shows the average energy composition for routes in
Vienna and Imst for a constant vehicle speed of 50 km/h based
on Wien 10 and Imst 10 DEMs. As can be seen from the
figure, energy consumption estimates are considerably higher
for routes in Imst with the main difference being the higher
energy necessary to overcome elevation differences in this
Alpine region. Note that the kinetic energy is always zero in
this study due to constant vehicle speeds which were assumed
since we are focusing exclusively on the effect of elevation
data and sampling.

Tables IV and V show the energy estimation results in
kWh per 100 km for 500 EV routes in Vienna and 500 EV
routes in the district of Imst. Energy estimates were computed
for constant speeds of 20, 30, 40, 50, 60, and 70 km/h.
In addition to the above-mentioned DEMs, energy estimates
were also computed for completely flat terrain representing
missing/omitted elevation data.

0 5 10 15 20

Imst
Vienna

kWh/100km
Basic Air drag Rolling Grade

Fig. 5. Energy estimate composition in Vienna and Imst for speeds of 50km/h
using Wien 10 and Imst 10 DEMs

V. DISCUSSION

Naturally, energy estimates are lowest if elevation data
is omitted. When elevation data is included in the computa-
tions, high-resolution DEMs (i.e. 10 meter or 5 meter DEMs)
lead to lower energy estimates while lower-resolution DEMs
(i.e. SRTM or EU-DEM) lead to higher energy estimates.
An omission of elevation information in Vienna leads to an
underestimation of 8% (at 50 km/h) while we observe an
underestimation of 30% in Imst due to the Alpine topology
of this region.

Considering raster sampling methods, results show that
the impact of the chosen sampling method increases with
decreasing DEM resolution. This effect can be observed in
both regions but while nearest neighbor sampling only causes
an over-estimation of 17% (at 50 km/h) when SRTM is used
in Vienna, the same approach results in an over-estimation of
116% if applied in the Alpine setting of Imst. Using bilinear
interpolation instead of nearest neighbor sampling reduces the
errors to 1% and 23% respectively.

When EU-DEM or SRTM are used to compute energy esti-
mates, t-tests show a significant difference between the results
based on nearest neighbor sampling and the more advanced
raster sampling methods (bilinear and bicubic). When 5 or 10
meter DEMs are used, no statistically significant differences
are found between the energy estimation results of any of the
three raster sampling methods. In all cases, t-tests show that
differences in energy estimation results between bilinear and
bicubic interpolation are not statistically significant.

The relative influence of elevation changes on the overall
energy consumption will be smaller for real-world trips where
kinetic energy used for acceleration and recuperation during
deceleration play a role as well but, as shown in Figure 3,
kinetic energy accounts only for a small share of the total
energy consumption of EVs.

VI. CONCLUSION

This study shows that the quality of elevation information
is an important factor in estimating EV energy consumption.
Even in less mountainous regions such as the city of Vienna,
an omission of elevation information would cause underesti-
mations of up to 8% compared to high-resolution DEM results
and in alpine regions the error grows up to 30%.
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TABLE IV. ENERGY ESTIMATES [KWH/100KM] FOR ROUTES IN VIENNA

speed [km/h]
20 30 40 50 60 70

flat 13.3 -7% 12.2 -8% 12.2 -8% 12.8 -8% 13.9 -7% 15.2 -6%
Wien 5 Near. N. 14.4 1% 13.4 1% 13.5 1% 14.1 1% 15.0 1% 16.3 1%

Bilinear 14.3 0% 13.3 0% 13.3 0% 13.9 0% 14.9 0% 16.2 0%
Bicubic 14.3 0% 13.3 0% 13.4 0% 13.9 0% 14.9 0% 16.2 0%

Wien 10 Near. N. 14.4 0% 13.3 1% 13.4 0% 14.0 1 % 15.0 0% 16.2 0%
Bilinear 14.3 13.3 13.3 13.9 14.9 16.2
Bicubic 14.3 0% 13.3 0% 13.3 0% 13.9 0% 14.9 0% 16.2 0%

EU-DEM Near. N. 14.8 4% 13.8 4% 13.8 4% 14.3 3% 15.3 3% 16.5 2%
Bilinear 14.4 1% 13.4 1% 13.4 1% 14.0 1% 15.0 1% 16.3 0%
Bicubic 14.5 1% 13.4 1% 13.5 1% 14.1 1% 15.0 1% 16.3 1%

SRTM Near. N. 16.4 15% 15.5 17% 15.7 18% 16.3 17% 17.2 15% 18.4 14%
Bilinear 14.5 2% 13.5 2% 13.5 2% 14.1 1% 15.0 1 16.3 1%
Bicubic 14.7 3% 13.7 3% 13.7 3% 14.3 3% 15.2 2% 16.5 2%

TABLE V. ENERGY ESTIMATES [KWH/100KM] FOR ROUTES IN IMST

speed [km/h]
20 30 40 50 60 70

flat 13.3 -24% 12.2 -28% 12.3 -30% 12.9 -30% 13.9 -29% 15.3 -26%
Imst 10 Near. N. 17.9 2% 17.4 2% 17.9 2% 18.8 2% 19.8 1% 21.0 1%

Bilinear 17.5 17.0 17.6 18.5 19.5 20.8
Bicubic 17.5 0% 17.1 0% 17.6 0% 18.5 0% 19.6 0% 20.9 0%

EU-DEM Near. N. 25.7 47% 25.8 51% 26.3 50% 27.0 46% 27.9 43% 28.9 39%
Bilinear 20.9 20% 21.0 23% 21.7 24% 22.7 23% 23.7 22% 25.1 21%
Bicubic 21.0 20% 21.1 24% 21.8 24% 22.8 23% 23.8 22% 25.2 21%

SRTM Near. N. 38.3 120% 38.6 127% 39.0 122% 39.8 116% 40.3 107% 41.3 99%
Bilinear 21.0 20% 21.1 24% 21.7 24% 22.6 23% 23.7 21% 25.0 20%
Bicubic 20.8 19% 20.9 23% 21.5 23% 22.5 22% 23.5 21% 24.9 20%

Furthermore it is essential to use bilinear or bicubic raster
sampling methods instead of simple nearest neighbor sampling
especially when using lower resolution DEMs such as NASA
Shuttle Radar Topography Mission (SRTM) or EU-DEM to
avoid gross over-estimations (up to 127% in the alpine test
region). Concerning the choice between bilinear and bicubic
sampling, statistical tests showed no significant difference
between the energy estimation results based on these two
methods.

The results for Vienna show that a 25 meter DEM such
as EU-DEM with bilinear or bicubic sampling is sufficient to
reach errors of only 1% and even with SRTM data errors stay
at a maximum of only 3%. In contrast, errors of 20 to 25%
have to be expected in mountainous regions such as Imst if no
high resolution 10 meter DEM is used.

These results can be used to make informed decisions about
which DEM quality is necessary in a certain area. Potential
applications include, for example, the optimization of disk
space requirements for applications on mobile devices by using
high resolution DEMs only for selected mountainous areas
while using lower resolution DEMs in the remaining areas.

The analysis has been performed for a medium size passen-
ger car. For significantly larger vehicles (e.g. trucks), the inter-
dependency of alternative vehicle parameters (especially mass
and efficiency) and different DEMs has to be investigated and
is a topic for future research activities. Moreover, for assessing
the impact of driving behavior, real-world energy consumption
measurements of both regions have to be compared to the
model results.
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