Talks and Poster Presentations (with Proceedings-Entry):

P. Casas, A. DŽAlconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind, P. Tran-Gia, R. Schatz:
"Predicting QoE in Cellular Networks using Machine Learning and in-Smartphone Measurements";
Talk: 9th International Conference on Quality of Multimedia Experience (QoMEX 2017), Erfurt; 05-31-2017 - 06-02-2017; in: "9th International Conference on Quality of Multimedia Experience (QoMEX 2017)", IEEE, (2017), ISBN: 978-1-5386-4024-1; Paper ID 16, 6 pages.



English abstract:
Monitoring the Quality of Experience (QoE) undergone by cellular network customers has become paramount for cellular ISPs, who need to ensure high quality levels to limit customer churn due to quality dissatisfaction. This paper tackles the problem of QoE monitoring, assessment and prediction in cellular networks, relying on end-user device (i.e., smart-phone) QoS passive traffic measurements and QoE crowdsourced feedback. We conceive different QoE assessment models based on supervised machine learning techniques, which are capable to predict the QoE experienced by the end user of popular smartphone apps (e.g., YouTube and Facebook), using as input the passive in-device measurements. Using a rich QoE dataset derived from field trials in operational cellular networks, we benchmark the performance of multiple machine learning based predictors, and construct a decision-tree based model which is capable to predict the per-user overall experience and service acceptability with a success rate of 91% and 98% respectively To the best of our knowledge, this is the first paper using end-user, in-device passive measurements and machine learning models to predict the QoE of smartphone users in operational cellular networks.


"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)
http://dx.doi.org/10.1109/QoMEX.2017.7965687


Created from the Publication Database of the AIT Austrian Institute of Technology.