[Zurück]


Vorträge und Posterpräsentationen (mit Tagungsband-Eintrag):

A. Vesely:
"Processes for the Treatment of Norm and Tenorm";
Vortrag: ICEM 03, The 9th International Conference on Rad. Waste Management and Environmental Remediation, Oxford; 21.09.2003 - 25.09.2003; in: "ICEM 03, The 9th International Conference on Radioactive Waste Management and Environmental Remediation", (2003).



Kurzfassung:
By contract with the Austrian government, the NES is treating radioactive waste from research institutions and industries. In the last years, one focus was the development of processes for the treatment of NORM and TENORM. Our goal in developing such processes is to recycle valuable compounds for further industrial usage and to concentrate the radioactive elements as far as possible, to save space in the waste storage facilities.

Austria is an important producer of tungsten-thoria- and tungsten-molybdenum-thoria-cermets. Scrap is generated during the production process in the form of turnings and grinding sludge and dust. Although big efforts have been undertaken to replace Thorium compounds, waste streams from past production processes are still waiting for treatment. The total amount of this waste stored in Austria may be estimated to be approx. 100 tons.

In close co-operation with the tungsten industries, recycling processes were tested and further developed at ARC in laboratory, bench scale and pilot plants.

Three different approaches to solve the problem were studied:
. Dissolution of tungsten in molten iron in an arc or induction furnace, thus producing an Fe-W or Fe-W-Mo alloy. Slag is produced upon the addition of lime and clay. This slag extracts nearly all of the Thorium contained in the metal melt.
. Selective dissolution of Tungsten in aqueous alkaline medium after oxidation of the metal to the hexavalent state by heating the scrap in air at temperatures of 500C to 600C. The resulting oxides are treated with sodium hydroxide solution. Tungsten and Molybdenum oxides are readily dissolved, while Thorium oxide together with silicon and aluminum compounds remain insoluble and are separated by filtration. Sodium tungstate solution is further processed by the usual hydrometallurgical tungsten mill process.
. Oxidation and dissolution of Tungsten can be achieved in one step by an electrochemical process. Thus, thoriated Tungsten scrap is used as an anode in an electrolysis cell, while sodium hydroxide or ammonia serve as electrolyte. After dissolution of Tungsten, the solids are separated from the liquid by filtration. With the electrochemical process, treatment of Tungsten-Thoria scrap can be achieved with high throughput in rather small reactors at moderate temperatures and ordinary pressure. The Tungsten solution exhibits high purity.

Another process which we examined in detail is the separation of radium from rare earth compounds. Radium was separated by co-precipitation with barium sulfate from rare earth chloride solutions. The efficiency of the separation is strongly pH-dependent. Again, the valuable rare earth compound can be reused, and the radioactive elements are concentrated.

Schlagworte:
Tungsten; Thorium; Rare Earth Elements

Erstellt aus der Publikationsdatenbank des AIT Austrian Institute of Technology.